New Developments in Direct Ion Storage

Sander Perle
Mirion Technologies
ARPS 2013 Conference
14 October 2013
Direct Ion Storage (DIS) Detector

- DIS Dosimeter:
 - Non Volatile Analog Memory Cell surrounded by a Gas Filled Ion Chamber
 - For photon radiation, initial interactions take place in the wall material and secondary electrons ionize the gas of the chamber
DIS technology - evolutions
Legacy personnel dosimeters
TLD, Film, OSL, RPL, CR39

Legacy Personal Dosimetry platforms ultimately require a return to a centralized processor for analysis, which delays important dose information to the administrator and wearer.
Instadose 1: read anytime

Introduction to Instadose 1
Instadose 1

Minimum Reportable Dose: 0.01 mSv
Lower Limit of Detection: 0.01 mSv
Useful Dose Range: 0.01 mSv - 10 Sv
Energy Response:
 Photon 5 keV - 6 MeV
 Beta 85mKr and Sr/90Y (Instadose 2)

Accreditations/Approvals/Licenses: NVLAP (Lab Code: 100555-0), UK (HSE), UAE (FANR), Australia, New Zealand, Nigeria and Ghana
Instadose 1: Energy Response Curve

NVLAP Reads (2012 October - December)

Introduction to Instadose 1
Instadose 2

- Bluetooth Low Energy Technology transmits dose
- Configurable calendar is used to set automatic read dates
- Dose data is stored until the data is communicated
- Manual reads can be perform pressing the button on the back
Instadose 2: The insides
Instadose 2: technology

- Utilizes BLE technology to communicate the “raw” read dose from the dosimeter to a communication interface

- Communication Interface (CI) relays the “raw” read dose to Mirion’s servers where dose is calculated using Mirion’s algorithm.

- The CI can be an iPhone 4S/5, iPad, instalink, or instalink USB for a PC

- “Read” consists of two parts (detector read and communication to server)

- No sensitive information is passed from dosimeter through the CI and the CI will not save/store any information. If there is no clear path to Mirion’s servers, the read will not be taken
Instadose 2: reads

- How/When are “reads” performed?
 - Configurable automatic read dates
 - The dosimeter automatically performs a read and communicates to the Mirion’s server
 - All dosimeters that initially do not connect will attempt to communicate every hour for 24 hours
 - If the dosimeter cannot communicate with Mirion’s server the dose reading is stored on the dosimeter
 - Data will be sent during next successful connection
 - Manual read and communication can be done anytime by pressing button on back of dosimeter when near communication station
Table 1a. Test categories, test irradiation ranges, and tolerance levels

<table>
<thead>
<tr>
<th>Test irradiation range</th>
<th>Tolerance level (L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test irradiation range</td>
<td>Deep</td>
</tr>
<tr>
<td>------------------------</td>
<td>------</td>
</tr>
</tbody>
</table>

I. Accidents, photons

A. General (B and C, random)
B. 137Cs
C. M150

<table>
<thead>
<tr>
<th>0.05 to 5 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>(5 to 500 rad)</td>
</tr>
<tr>
<td>0.24</td>
</tr>
</tbody>
</table>

II. Photons/photon mixtures

A. General a (E \leq 20 keV; \perp if β)
B. High E (137Cs, 60Co; θ)
C. Medium E 1 (E > 70 keV, $\leq 60^\circ$)
D. Plutonium specifica (see Appendix A, Section A2)

<table>
<thead>
<tr>
<th>0.5 to 50 mSv</th>
<th>0.30</th>
<th>0.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.05 to 5 rem)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

III. Betas

A. General (B and C, random)
B. High E (85Sr,85Y)
C. Low E (85Kr)
D. Uranium slab

<table>
<thead>
<tr>
<th>2.5 to 250 mSv</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.25 to 25 rem)</td>
</tr>
</tbody>
</table>

IV. Photon/betab mixtures

<table>
<thead>
<tr>
<th>Shallow</th>
<th>Deep</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0 to 300 mSv</td>
<td>0.5 to 50 mSv</td>
</tr>
<tr>
<td>(0.30 to 30 rem)</td>
<td>(0.05 to 5 rem)</td>
</tr>
<tr>
<td>...</td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>...</td>
</tr>
</tbody>
</table>

V. Neutron/photon mixturesc

A. General (B and C, random)
B. 252Cf + II
C. 252Cf(D$_2$O) + II

| 0.30 | ... |
Instadose 2: technical details

- Instadose 2 has passed NVLAP categories I – IV of ANSI standard N13.11 – 2009 with excellent results

<table>
<thead>
<tr>
<th>Category</th>
<th>Bias</th>
<th>StDev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Category 1</td>
<td>0.014</td>
<td>0.06</td>
</tr>
<tr>
<td>Category 2 - Deep</td>
<td>-0.05</td>
<td>0.06</td>
</tr>
<tr>
<td>Category 2 - Shallow</td>
<td>-0.014</td>
<td>0.06</td>
</tr>
<tr>
<td>Category 3</td>
<td>0.02</td>
<td>0.05</td>
</tr>
<tr>
<td>Category 4 - Deep</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>Category 4 - Shallow</td>
<td>0.11</td>
<td>0.05</td>
</tr>
</tbody>
</table>
Instadose 2: energy response curve

- Response/Delivered
- Energy (keV)

- Deep - Algo
- Shallow - Algo
Instadose 2 Angular Testing

Horizontal Orient.

Vertical Orient.
Instadose 2: angular response (20 keV)

M30 Horizontal - To Dose

M30 Vertical - To Dose
Instadose 2: angular response – 35 keV

M60 Horizontal - To Dose

M60 Vertical - To Dose
Instadose 2: angular response – 75 keV

M150 Horizontal - To Dose

M150 Vertical - To Dose
Instadose 2: angular response – 662 keV
Instadose 2 – Testing in Progress

• IEC 62387 Type Testing
 – Lower Limit of Detection*
 – Dose Linearity*
 – Side radiation testing
 – Temperature testing
 – Humidity testing
 – Light Exposure testing
 – Fading/Self irradiation testing
 – Background radiation testing
 – Drop Testing*

• FCC/CE testing
Instadose 2 at base of Mount Everest

Questions?