South Australia’s Environment Protection Authority

Radon chamber for simulation of occupational and environmental exposure conditions in mining projects

Artem Borysenko, David Kruss, Andrew Johnston, Peter Haigh, Graeme Palmer, Daniel Bellifemine
Radon Progeny Coordination Group

- Currently SA EPA radon chamber is used in the first stage of measurements for the Radon Progeny Coordination Group
- Radon Progeny Coordination Group established by ARPANSA and includes the uranium mining industry and State and Territory regulatory authorities
- New radon progeny dose conversion approach - ICRP 115 (2010)
Radon Chamber

- Current chamber design was established in 2008 from a previous designs (1984, 2001) used at earlier locations
- This model has improved radon injection and control of concentrations
Radon source

- Source of radon is Radium-226 dissolved in HCl.
- Radium-226 activity is ~400 000 Bq.
- Source is contained in a glass flask covered by a polyethylene film (permeable to radon).
- Radon source is continually flushed at the rate of 1 L/min to maintain constant radon concentration.
- The radon flux can be proportioned between the chamber and the exhaust duct to control chamber concentrations.
Combination of oil particle generator and continuous recirculation/filtering system based on HEPA 7112 filter

Recirculation rates: 20, 40, 60 or 80 provide effective exchange of particle as well as stable value for particle concentration
Variation of particle concentration
Radon concentration

- Radon is injected at 0.00586 Bq/min ± 0.00016 with full source flow 6 L/min
- Desired level is maintained with 0.1 L/min source flow
- The radon activity is measured using AlphaGUARD
Continuous counting method WLM-30 Working Level Monitor

The air within the chamber is drawn onto the filter paper at ~5 L/min, allowing the radon decay products to be collected
Borak method

- PEAC determination is based on collecting of RDP on the filter (5 min)
- Counting (for 5 min) after interval of time (3 min) allowing in-growth of all three radon decay products
Modified Tsivoglou (Thomas) method

\[
\begin{bmatrix}
A_c \\
B_c \\
C_c
\end{bmatrix} =
\begin{bmatrix}
0.127892 & -0.062077 & 0.058691 \\
-0.004229 & -0.008582 & 0.023892 \\
-0.012406 & 0.018993 & -0.022702
\end{bmatrix}
\begin{bmatrix}
C_1 \\
C_2 \\
C_3
\end{bmatrix}
\]

LabView based software for automated counting and simultaneous Borak/Tsivoglou

ARL/TR011, June 1979 Monitoring Employee exposure to Radon and its daughters in Uranium Mines
V.A. Leach and K. H. Lokan

A Formulation of the linear equations of the Thomas Method into Simple Matrices. B.M. Harley Radiation Protection in Australia (1989), Vol.7, N 2
PAEC and equilibrium factor

![Graph showing PAEC (μJ/m³) and equilibrium factor for different recirculation rates. The graph includes lines for TSVG, Borak, F, and F No particles. The y-axis represents PAEC, and the x-axis represents recirculation rate. The equilibrium factor is also plotted on the right y-axis.]

South Australia’s Environment Protection Authority
Influence of ventilation rate on proportion of decay products

RDP concentration varied by changing filtration/circulation (age of mine air)
Summary

- The EPA SA radon chamber is used to replicate the conditions of many real-world situations e.g. outdoor environment and underground mines

- This is achieved by:
 - Using a known radon source
 - Controlling flow-rates of radon into the chamber
 - Measuring radon activity concentration with the AlphaGUARD detector
 - Measuring PAEC with the Tsivoglou method

- Radon Progeny Coordination Group - Monitoring Of Radon Progeny And Calibration Of Equipment For Mining Projects David Kruss, EPASA