Optimisation of image quality and patient dose in radiographs of paediatric extremities using direct digital radiography

Adam Jones
Medical Physics Specialist

NSW Health
Western Sydney Local Health District

Guy’s and St Thomas’ NHS Foundation Trust
The Image Quality Issue

- Issues with image quality (IQ) of infant (0 – 1 years) extremity radiographs – “blurry”, “flat” & “noisy”
- Default protocols still follow 1996 European Commission guidelines\(^{(1)}\) for film-screen
- High kV_p & added Copper filtration
- Digital detectors (DDR) offer a number of advantages
- Time for change?
- A white paper from Philips\(^{(2)}\) indicating low kV_p & no added filtration

\(^{(1)}\) Rep. EUR 16261, EN, 1996.
\(^{(2)}\) Hess R, Neitzel U. Optimizing image quality and dose for digital radiography of distal pediatric extremities using the contrast-to-noise ratio
Aim: Dose Vs. Image Quality

- Can the exposure parameters be changed to result in an improved IQ?
 - Lower kV and no Cu filtration
 - Improved Inherent contrast - higher proportion of interactions via the Photoelectric Effect
 - Only ~ 10% reduction in receptor dose by lowering kV_p (57 to 40)

- Can this improvement in IQ be achieved whilst keeping the patient dose fixed?
 - Only critical organ in the beam is the red bone marrow
 - Paediatric extremities offer little attenuation:
 - Lower energy X-Rays contribute to image formation as they are not absorbed in the patient
Patient Dose:

- Effective Dose (E) – correlates with the risk of radiation induced stochastic effects
- Monte Carlo simulation using PCXMC v2.0 software
- E for a lateral ankle of 1 year old patient and a fixed input air Kerma

Image Quality:

- Require high contrast and low noise
- Contrast-to-Noise ratio (CNR)
 - $CNR = \frac{S_1 - S_2}{\sigma_1}$
 - where S_1 & S_2 are the signals in Regions 1 & 2 and σ_1 is the noise in Region 1
Phantom Study: Exposure Parameters

- Infant foot phantom:
 - Real skeletal structures
 - Water equivalent mould

- Default parameters for < 1 y.o lateral ankle - $55\,kV_p$, 0.1 mm Cu. & 1.4 mAs

- Parameters investigated:
 - 40, 45, 50, 55, 60 & 64.5 kV_p
 - With and without 0.1 mm Copper
Phantom Study: Fixed Effective Dose

- Fixed E to that given by default exposure parameters

- Fix E by modulating the set mAs for variance in:
 a. Tube output
 b. Computed E

- 12 images each acquired at the same E and therefore same risk to the patient
Phantom Study: CNR Quantification

- CNR between tibia and adjacent soft tissue:
 - $\text{CNR} = \frac{(S_1 - S_2)}{\sigma_1}$

- CNR_{cor} : corrected CNR for discreet mAs stations available
 - $\text{CNR}_{\text{cor}} = \text{CNR} \times \sqrt{\frac{mAs_{\text{calc}}}{mAs_{\text{set}}}}$

- Requires a quantum noise limited system:
 - Maximum peak DQE deviation of 15% between doses 0.91 to 9.31 μGy

Phantom Study: CNR Results

Fixed Effective Dose

- No Cu
- 0.1 mm Cu

CNRcor vs Tube Potential (kV)
CNR Comparison

- Highest and lowest CNR measurements simulated on *ImageJ*

\[\text{CNR} = 12.0 \quad \text{CNR} = 6.3 \]
Phantom Study: Subjective Clinical IQ

- Phantom images were scored by 3 consultant radiologists and 1 reporting radiographer
- IQ was assessed based on European CEC guidelines
- 3 point scoring scale for sharpness, noise, cortex/trabecular pattern & overall acceptability

- 12 Images in total:
 - 40, 45, 50, 55, 60 & 64.5 kV$_p$
 - No Copper & 0.1 mm Copper
 - The mean total score across all 4 observers was calculated
Phantom Study: Clinical IQ Results

Fixed Effective Dose

Mean Total IQ Score vs. Tube Potential (kVp)

- No Cu
- 1mm Cu
Discussion (1)

Optimum Beam Quality:

‘40 kV_p & no added Copper filtration’

This has been confirmed with:

a. Quantitative CNR phantom measurements
b. Subjective phantom clinical image quality scores
1. Old European Guidelines recommend additional filtration for all pediatric imaging. However:

- There are no critical superficial organs in pediatric extremities

- Deterministic effects not a concern in planar radiography
2. Paediatric extremity provides little attenuation:
 - Smaller fraction of low kV X-rays absorbed in patient
 - ↑ inherent contrast and ↑ image quality
 - Receptor dose variation within 20% of default for all beam qualities used

3. Lower beam quality does not increase E:
 - No critical radiosensitive organs – fraction of red bone marrow
 - For a fixed air Kerma: E for 55 kV + 0.1mm Cu is almost double E for 40 kV and no Cu
 - i.e. lower E for the lower energy spectrum
Verification of Optimised Beam Quality

- Final verification on real clinical images of post mortem babies
- 5 observers (4 radiologists and 1 reporting radiographer) each scored 10 lateral ankle images acquired using both the default and optimised beam quality
- Mean Total IQ scores of all 5 observers across each of the two sets of 10 images:
 - Default (55 kV_p, 0.1 mm Cu.): 7.9 (σ = 0.9)
 - Optimised (40 kV_p, no Cu.): 11.6 (σ = 0.3)
- Mann-Whitney U-Test: probability results obtained if no difference in the images is < 0.1 %
Conclusions

- Infant distal extremities:
 - ‘40 kVp & no additional Copper filtration’
 - Better IQ with no dose penalty
 - Reduction in the number of repeats & less ‘wasted’ dose on ‘un-diagnostic’ images

- Being widely adopted in the U.K, Europe & Australia
- Published in BJR, March 2015
DIY Methodology

- **Check Image Quality at lower beam quality with fixed E**

1. Check local default protocol: kV, filtration and mAs
2. Measure output (µGy) at fixed distance and fixed mAs for a) default beam quality, b) 40 kV_p & no Cu.
3. Compute E at fixed incident air Kerma for a) default beam quality, b) 40 kV_p & no Cu.
4. Calculate the mAs modulation ratio (M):

\[
M = \frac{output_{\text{def}}}{output_{40}} \times \frac{E_{\text{def}}}{E_{40}}
\]

5. The mAs required for the 40 kV_p & no Cu beam quality:

\[
m\text{As}_{40} = M \times m\text{As}_{\text{default}}
\]

- Will see an improvement if Copper filter used as default
Acknowledgements and References

Many thanks to:

- Guy’s & St. Thomas’ London, UK
- UK SRP
- Western Sydney Local Health District
- ARPS

References mentioned in text:

